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Abstract:Peristaltic transport of a Williamson fluid 
in an asymmetric channel through porous 
medium is studied under long wavelength and 
low Reynolds number assumptions.  The 
nonlinear governing equations of the peristaltic 
flow are solved using perturbation method. The 
solution for the stream function is obtained by 
neglecting inertia and curvature effects. The 
velocity distribution, the volume flow rate and the 
pressure rise are also determined. 
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I. Introduction
Peristalsis is a well-known mechanism for 

pumping biological and industrial fluids. Even though 
it is observed in living systems for many centuries; the 
mathematical modeling of peristaltic transport has 
begun with the important works by Fung and Yih [1] 
using laboratory frame of reference and Shapiro et 
al.[2] using wave frame of reference. Many of the 
contributors to the area of peristaltic pumping have 
either followed Shapiro or Fung. Most of the studies 
on peristaltic flow deal with Newtonian fluids. The 
complex rheology of biological fluids has motivated 
investigations involving different non-Newtonian 
fluids. Peristaltic flow of nonNewtonian fluids in a tube 
was first studied by Raju & Devanathan [3].   

Peristalsis is a mechanism adopted by many 
physiological systems and mechanical peristaltic 
pumps.  Most of the physiological systems may be 
approximated as symmetric ducts.  In view of this, 
Peeyush Chandra [4], Sarojamma et al [5], 
Ramachandra Rao and Usha [6], Misra & Pandey [7], 
Vajravelu et al. [8-11], Subba Reddy et al. [12, 13] 
and Srinivas et al.[14,15] made detailed studies on 
peristaltic pumping through tubes and channels. 
Brassuer and Anupampal (vide Chengel & Cimbala, 
[16]), made experiments on the mechanical 
functioning of the stomach using MRI (Magnetic 
Resonance Image).  They observed that the stomach 
is a mixer, a grinder, a storage chamber, and a 
sophisticated peristaltic pump that controls the 

release of liquid and solid gastric content into the 
small intestines where nutrient uptake occurs.  The 
MRI image of the stomach has revealed its 
asymmetry nature. Another physiological system 
namely uterus is also modeled as an asymmetric 
channel by Eytan and Elad [17]. These facts will 
explain the necessity of considering the physiological 
system to be asymmetric ducts also. Motivated by 
these facts, it will be interesting to study the peristaltic 
transport of Williamson fluid through an asymmetric 
channel filled with porous material.  

In this paper peristaltic pumping of Williamson 
fluid through a porous medium in an asymmetric 
channel with flexible walls is investigated. Using 
the wave frame of analysis, boundary value 
problem is solved and the results are discussed 
through graphs. 

   

II. Mathematical Formulation 
Let us consider the peristaltic transport of an 

incompressible Williamson fluid in a two dimensional 

channel of width 21 dd + . The flow is generated by 

sinusoidal wave trains propagating with constant 
speed c along the channel walls. The geometry of the 
wall surfaces are defined as 
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(1) 

where 1a and 1b  are the amplitudes of the 

waves, λ  is the wave length, 21 dd + is the width of 

the channel, c is the velocity of propagation, t  is the 

time and X is the direction of wave propagation. The 

phase difference φ  varies in the range 0 φ π≤ ≤ in 

which 0=φ corresponds to symmetric channel with 

waves out of phase and φ π=  the waves are in 
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phase, further φandddba 2111 ,,,  satisfies the 

condition 
2 2 21 1 1 1 1 22 cos ( ) .a b a b d dφ+ + ≤ +

                       Figure 1.Physical Model 

Introducing a wave frame ),( yx  moving with velocity 

c away from the fixed frame ),( YX  by the 

transformation, 

, , , ( ) ( , ).x X ct y Y u U c v V and P x P X t= − = = − = =
                                                  (2) 
and defining  
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                                                                              (3) 
and using the above non-dimensional quantities, the 
resulting governing equations become (Nadeem[18]), 

0u v
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∂ ∂
                (4) 
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 Here δ, Re, We represent the wave, 
Reynolds and Weisseing numbers, respectively. 
Under the assumptions of long wavelength δ << 1 

and low Reynolds number, neglecting the terms of 
order δ and higher, equations (5) and (6) take the 
form  

21 ( 1)p u uWe ux y y y σ
   ∂ ∂ ∂ ∂

= + − +   
∂ ∂ ∂ ∂    

  (7)            
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y

∂
=

∂
                                      (8) 

The corresponding boundary conditions in wave 
frame of reference are given by 

u= -1      on y=h1(x) 
u= -1         on y=h2(x)    (9) 

Elimination of pressure from equations (7) & (8) yields 

21 ( 1)dp u uWe udx y y y σ
   ∂ ∂ ∂

= + − +   
∂ ∂ ∂    

              (10) 

The volume flow rate q in a wave frame of reference 
is given by 

   q = 

1

2

( )

( )

h x

h x
udy∫        

(11) 
The instantaneous flow Q(x, t) in a fixed frame is 
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h x h x h x
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(12) 

The time average flux Q   over one period T (= c/λ ) 

of the peristaltic wave is     

Q =

1
1 2

0 0

1 1 ( ) 1
T
Qdt q h h dt q dT T= + − = + +∫ ∫      (13)

III. Perturbation solution 
    Since, equation (10) is non-linear; its exact solution 
may not be possible. Therefore, we expand u, P and 
q as 

2
0 1 0( ),u u Weu We= + + 2

0 1 0( ),P P WeP We= + +
2

0 1 0( ),q q Weq We= + +       (14) 

where 
pP x

∂
=

∂
,  Substituting above expressions in 

equation (10) and boundary conditions (9), we get the 
following system. 

System of order
0We

2
20 0

02 ( 1),dp u udx y σ
∂

= − +
∂

   (15)  

and the respective boundary conditions are 

10 hyfor1u =−= ,   20 hyfor1u =−=                      

                                                                             (16) 
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System of order
1We

22
201 1

12
udp u udx y y y σ

 ∂∂ ∂
= + − 
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  (17) 

11 hyfor,0u ==  , 21 hyfor,0u ==    (18) 

Solution for system of order  
0We

     Solution of Eq. (15) satisfying the boundary 
conditions (16)  can be written as 

0
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, and the volume flow 

rate 0q is given by 
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From Equation (20), we get 
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Solution for system of order  
1We

 Substituting the zeroth-order solution (19) into 
(17), the solution of the resulting problem satisfying 
the boundary conditions take the following form. 
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where     A = ( )1 2h hE e eσ σ− ,B = 
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and the volume flow rate 1q is given by 
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From equation (23), we get     
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Substituting equations (21) and (24) in to equation 
(14) and using the relation (14), we get 
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where   
IJ D= ,         Integrate above equation over 

one wavelength, we get 
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IV. Results and Discussions 

From equation (26) we have calculated the 

pressure difference as a function of Q  for different 

values of permeability parameter σ  and different 

phase differences φ  for a fixed a=0.8, b=0.5, d=2, 

We=0.03 and is shown in figures (2) and (3).We 

observe that the larger the parameter σ  the greater 

the pressure rise against which the pump works. We 

observe that for a given P∆ , the flux Q  increases 

with increasing σ  .For free pumping there is no 

difference in flux Q  for increase in σ .We also 

observed that the pressure rise increases with 

increasing phase difference φ . 

           The variation of pressure rise with time 
averaged flow rate is calculated from equation (26) for 
different values of We and different phase differences 

for a fixed a=0.8,b=0.5,d=2, σ =1.5 and is shown in 

figures (4) to (6). We observe that the larger the We, 
the smaller the pressure rise against which the pump 
works. We observe that for a given P∆ ,the flux Q
decreases with increasingWe. For a given fluxQ  the 

pressure rise decreases with increase We.  

          The variation of P∆  with time averaged flow 
rate is calculated from equation (26) for different 

values of the phase differenceφ , for a fixed a=0.8, 

b=0.5,d=2,σ =0.5, We=0.03 and is shown in figure 

(7). We observe that the larger the phase 

differenceφ , the greater the pressure rise against 

which the pump works. We observe that for a 

given P∆ , the flux Q  increases with increasingφ . 

For a given flux Q  the pressure rise increases with 

increasingφ . 

Fig.2. The variation of P∆  with Q  for different values of σ                               

          for  a  fixed a = 0.8, b =0.5, φ  =0, d =2; We = 0.03 

Fig.3. The variation of P∆  with Q  for different values of σ   

            for  a fixed   a = 0.8,b =0.5, φ  = π /6, d =2; We = 0.0 

Fig.4. The variation of P∆  with Q  for different values of We  

          for  a fixed a = 0.8,b =0.5, φ = 0, d =2; σ  = 1.5. 
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Fig.5. The variation of P∆  with Q  for different values of We  

          for a fixed   a = 0.8, b =0.5, φ  = 6/π , d =2, σ  = 1.5. 

Fig.6. The variation of P∆  with Q  for different values of We 

          for a fixed a = 0.8, b =0.5, φ  = 3/π ,  d =2, σ  = 1.5. 

Fig.7. The variation of P∆  with Q  for different values of  φ    

          for a fixed  a = 0.8, b =0.5, We =0.03, d =2, σ  = 0.5. 
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