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Abstract—�This paper is concerned with the study 

of the peristaltic flow of Herschel – Bulkley fluid in an 

inclined flexible channel lined with porous material under 

long wave length and low Reynolds number assumptions. 

This model may be applicable to describe blood flow in 

the sense that erythrocytes region and the plasma regions 

may be described as plug flow and non-plug flow regions. 

The effect of yield stress , Darcy number ,angle of 

inclination and the index on the flow characteristics is 

discussed through graphs. 
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X. INTRODUCTION

Peristaltic transport is a form of fluid transport 

which occurs in biological systems. This mechanism has 

received considerable attention in recent times in 

engineering as well as in medicine. It plays an 

indispensable role in transporting many physiological 

fluids in the body. Many modern mechanical devices 

have been designed on the principle of peristaltic 

pumping for transporting noxious fluids without 

contaminating the internal parts. Further the blood 

transfusion process in dialysis, the mechanism of 

peristalsis may be applicable since the blood flow in 

small blood vessels is reported to be done by peristalsis. 

Latham (1966) made first experimental study of 

the mechanics of peristaltic transport. The results of the 

experiments were found to be in good agreement with  

the theoretical results of Shapiro (1967). Based 

on this experimental work, Burns and Parkes (1967) 

studied the peristaltic motion of a viscous fluid through a 

pipe and a channel by considering sinusoidal variations 

at the walls. 

In physiological peristalsis, the pumping fluid 

may be a Newtonian or non – Newtonian fluid. Kapur 

(1985) suggested several mathematical models for 

pumping physiological fluids. Among these some 

models deal with Newtonian fluids and others with non – 

Newtonian fluids. Ravi Kumar et al. [    ] studied the 

peristaltic pumping in a finite length tube with permeable 

wall. Krishna Kumari et al. [       ] studied the peristaltic 

pumping of by considering Jeffrey model. 

Scott Blair (1959) reported that blood obeys the 

Casson model only for moderate shear rate flows. He 

also reported that the assumptions included in Casson’s 

equation are not suitable for Cow’s blood and that the 

Herschel – Bulkley equation represents fairly closely 

what is occurring in the blood. Herschel – Bulkley fluid is 

a semi solid rather than an actual fluid. 

Among models of semisolids, the Herschel – 

Bulkley model is preferred because it describes blood 

behaviour very closely and also the Newtonian, 

Bingham and Power – law models can be derived as 

special cases. Furthermore, Herschel – Bulkley fluids 

describe flows with a non –linear stress strain 

relationship either as a shear thickening fluids or shear 

thinning one. Since shear thinning and shear thickening 

fluids play an important role in biomedical engineering. 
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Some examples of fluids behaving in this 

manner include food products, pharmaceutical products, 

slurries, polymeric solutions and semisolid materials. 

Chaturani and Samy (1985) discussed the blood flow 

through a stenosed artery by considering blood as a 

Herschel – Bulkley fluid. The gastrointestinal tract is 

surrounded by a number of heavily innervated smooth 

muscle layers, contraction of these muscle layers can 

mix the contents of the tract and move food in a 

controlled manner in an appropriate direction. Epithelial 

cells, beneath these layers are responsible for the

absorption of nutrients and water from the intestine. 

These layers consist of many folds and there are pores 

through the tight junctions of them. So the flow of fluids 

in different geometries in channels/tubes with porous 

material at the boundary is very significant in 

physiological applications. Vajravelu et al.[   ] considered 

the Herschel – Bulkley fluid in their study of peristaltic 

pumping of fluids.  

In view of these, peristaltic flow of Herschel – 

Bulkley fluid in an inclined flexible channel lined with 

porous material is studied under long wave length and 

low Reynolds number assumptions. This model may be 

applicable to describe blood flow in the sense that 

erythrocytes region and the plasma regions may be 

described as plug flow and non-plug flow regions.  

HERSCHEL – BULKLEY MODEL  

The basic equations governing the flow of an 

incompressible Navier-Stokes fluid are the field 

equations  

div V = 0,  

dv
div f

d
σ ρ

τ
+ =

where V is the velocity, f the body force per unit mass, ñ 

the density, and d/dt the material time derivative.  ó    is 

the Cauchy stress defined by 

pI Tσ = − −

2 ,T D Sµ= +   2S Dη=

where D is the symmetric part of the velocity gradient, 

that is, 

1

2

TD L L = +  , L gradV=

Also lρ− denotes the indeterminate parof the stress 

due to the constraint of incompressibility, µ  and c  are 

viscosities. 

    The Herscel-Bulkely model combines the effects of 

Bingham and power-law behaviour in a fluid.  For low 

strain rates ( )0 0/γ τ µ< , the “rigid” material acts like a 

very viscous fluid with viscosity 0µ .  As the strain rate 

increases and the yield stress threshold, 0τ is passed, 

the fluid behaviour is described by a power law 

.

00

.

0 ])/([

γ

µτγτ
η

n
n

k −+
=

where k is the consistency factor and n is the power-law 

index. 

II. MATHEMATICAL FORMULATION 

Consider the peristaltic pumping of a Herschel – 

Bulkley fluid in an inclined flexible channel of width ‘a’. 

The channel is inclined at an angle θ with the horizontal. 

The flexible walls of the channel are coated with non 

erodible porous material. Suppose we have a 

longitudinal train of progressive sinusoidal waves on the 

upper and lower walls of the channel. For simplicity, we 

restrict our discussion to the half width of the channel as 

shown in Fig. 1. The region between y=0 and y = y0 is 

called  a plug flow region.  In the plug flow region, 

│τxy│ 0τ≤ .  In the region between y = y0 and y = H, we 

have │τxy│ 0τ≥ .   

The wall deformation is given by 

Y = H(X, t) = a + b sin )(
2

ctX −
λ

π
  

                  (1)   

where b is the amplitude , λ  is the wavelength and c is 

the wave speed. 
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Under the assumptions that the channel length 

is an integral multiple of the wavelength λ  and the 

pressure difference across the ends of the channel is a 

constant, the flow becomes steady in the wave frame 

(x,y) moving with the velocity c away from the fixed ( 

laboratory ) frame (X,Y) . 

The transformation between these two frames is given 

by 

x = X-ct ,  y = Y ,     u(x,y) = U (X-ct, Y) – c 

v(x,y) = V(X-ct , Y)  , p(x) = p(X,t) , � = �-Y         (2)     (2)  

where U and V are velocity components in the 

laboratory frame and u, v are velocity components in the 

wave frame and � and �  are the stream functions in 

the wave and laboratory frames respectively. In many 

physiological situations it is proved experimentally that 

the Reynolds number of the flow is very small. We 

assume that the flow is inertia free and the wavelength 

is infinite.  

We introduce the following non-dimensional 

quantities in order to make the basic equations and 

boundary conditions dimensionless. 

; ; ; ; ;
x y h ct

x y h t
a a a

ε
ε

λ λ
= = = = =

0
0; ; ; ; ;

n

b q fa
q F

a ac ac cc

a

τ ψ
φ τ ψ

µλ
µ

= = = = =
 
 
 

( )1 2

0

; ;
u v pa

u v p
c y ac x c

ψ λ ψ

ψ µλ

∂ ∂
= = = = − =

∂ ∂

where µ   and υ  are velocity components in the wave 

frame. 

Under the lubrication approach, the equations governing 

the motion become (dropping bars) 

( ) sinyx

p

y x
τ η θ

∂ ∂
= − +

∂ ∂
                            (3) 

       

where 0

n

yx

u

y
τ τ

 ∂
= − + 

∂ 
                            (4) 

       

The dimensionless boundary conditions are 

0ψ =   at 0y =                    (5) 

      

0yyψ =  at 0y =       (6)  

      

0yxτ =              at y = 0        (7) 

     

1
Da u

u
yα

− ∂
= −

∂
  at ( )y h x ε= −               (8) 

     

III. SOLUTION OF THE PROBLEM 

On solving equations (3) and (4) together with boundary 

conditions (5) - (8) and u
y

ψ∂
=

∂
 and 

x

ψ
υ

∂
= −

∂
, we get 

the velocity field as  

( ) ( ){ } ( )
1 1

0 0 0

1
1

1

k k kk Da
u P h y y y y y

K α

+ + 
= −∈ − − − + − − 

+ 

                                  (9) 

where 
1

sin :
p

p k
x n

η θ
∂

= − + =
∂

              (10) 

       

We find the upper limit of the plug flow region using the 

boundary conditions that 0yyψ =  at 
0y y=  so, we 

have, 0
0y

P

τ
=          (11) 
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Also by using by the condition  

yx hτ τ −∈=  at  y h= − ∈ , we obtain   

     

hP
h

τ −∈=
−∈

       (12) 

      

Hence 0y

h−∈
0

h

τ

τ −∈

= ;0 1τ τ= < <

Taking 0y y=  in (9) we get the velocity in the plug flow 

region as  

[ ]
1

0 1
1

K
k

p

p
u h y

k

+
= −∈ − −

+
     (13) 

      

 Integrating equations (9) and (13) and using the 

conditions p 0ψ =  and pψ ψ=  at 0y y=  we get the 

stream function as  

1
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}
2
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][

1

1
{

1

0

2

01

0

+

−
+

+

−
−−−
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+−=
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k

yyDa

k
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k
py

k
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α

εψ

(14)

( )
1

0
1

k
k

p

p
y h y y
k

ψ
+

= − + − ∈ −  +
          (15) 

The volume flux ‘q’ through each cross section in the 

wave frame is given by  

0

00

y h t

p

y

q u dy udy

−

= +∫ ∫

α

ε
ε

εεε

Da

k
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hyh
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01

0

1

0

� � � � (16)

       

The Instantaneous volume flow rate ( ),Q X t  in the 

laboratory frame between the central line and the wall is  

( ) ( )
0

, , ,

H

Q X t U X Y t dY= ∫ �� �������������������������

From equation (16) we can write  

( )( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1

2 1 1 1

1 2
sin

1 2 1 1 2

k

k k k k

q h k kdp

dx h k h h Da k

α
η θ

τ α τ τ
+ + + +

 
+ −∈ + + 

= − + 
   −∈ − + − −∈ − −∈ − + +    

��

� � � � � � � � � � � ��������������

Averaging equation (17) over one period yields the time mean flow (time - averaged volume flow rate ) Q  as  

0

1
T

Q Qdt
T

= ∫ = 1q +                  (19) �

The pumping characteristics  
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α
η θ

τ α τ τ
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 
  − + −∈ + + 
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∫

(20) 
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∫
�

� � � � � � � � � � � � (22) 

IV. DISCUSSION OF RESULTS 

The variation of pressure rise with time averaged flux is 

calculated from equation (20) and is shown in Fig. (2) for 

different values of yield stress with 

3η = , 0.01, 0.01, 0, 0.6, 0.1Da α θ φ= = = = ∈=  and 

0.2η = . The pumping curves intersect at a point (0.5, 

0.006) in the first quadrant due to variation in the 

parameterτ . It is found that P∆   increases with the 

increase in yield stress τ to the left of the point of 

intersection and opposite behaviour is observed to the 

right of this point. For a fixed P∆ , the flux increases due 

to an increase in the yield stress parameter τ  in the first 

half of the channel.  

 The variation of P∆ with Q  for different values 

of τ  for  / 3θ π=  is shown in Fig. (3). We find that the 

behaviour is same for horizontal and inclined channels.  
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 The variation of pressure rise with time 

averaged flex is numerically evaluated for different 

values of Darcy number ‘Da’ with 

3, 0.01, 0.6, 0.1n zα φ= = = =  and is shown in Fig. 

(4).It is observed that for a given p∆ , the flux decreases 

with an increase in the Darcy number for 0 0.5Q< <

and the opposite behaviour is observed for 0 0.5Q< < . 

For a given flux  0.5Q > , the pressure difference 

P∆ decreases with an increase in Da and the behaviour 

is found to be opposite for 0.5Q > .   

   

 The variation of pressure rise p∆  with the flux 

Q is calculated for different values of ‘∈ ’ with / 3θ π= ,  

0.6φ = , 0.1τ =  and 0.01α =  and is shown in Fig. 

(5.) It is found that for a given ‘∈ ’ (thickness of the 

porous lining), p∆  decreases with the increase in the 

time averaged flux Q . For a given Q  >0.5 

(approximately), p∆  increases with the increasing ∈

and 0.5Q >  the variation of  p∆ is negligible.  

 The variation of pressure rise with Q for 

different values of angle of inclination ‘θ ’ for different 

values of angel of inclination ‘θ ’ is shown in Fig (6). It is 

observed that for  a given p∆ , the flux Q  increases 

with the angle of inclination of the channel with  the 

horizontal. For a givenQ , it is found that the pressure 

rise increases with the thickness of the porous lining.  

      The variation of pressure rise with time averaged 

flux is calculated for different values of n (index) and is 

shown in Fig.(7). We observe that the pumping curves 

intersect at a point (0.5, 0.17) in the first Quadrant. For a 

given p∆ , we find that the flux Q decreases with an 

increase in index, ‘n’ for 0 0.5Q< < hen 0.5Q > , the 

opposite behaviour is noticed. For a given flux 0.5Q < . 

The pressure rise decreases with increasing ‘n’. The 

opposite behaviour is observed for 0.5Q > . 

                      Fig.1. Physical model 
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Fig 2. Variation of p∆  with Q  for different values of τ   when n = 

3,Da = 0.01, 0.01, 0, 0.1, 0.6, 0.2α θ φ η= = ∈= = =

Fig 3. Variation of p∆  with Q  for different values of τ  when           

n = 3,Da = 0.01,  0.01, / 3, 0.1, 0.6, 0.2α θ π φ η= = ∈= = = . 

Fig 4.  Variation of p∆  with Q  for different values of Da  when n =3 ,   

�� 0.01, , 0.1, 0.6, 0.2, 0.1
3

π
α θ φ η τ= = ∈= = = =

Fig 5. Variation of p∆  with Q   for different values of ∈  when 

n=3,Da=0.3, 0.01, , 0.6, 0.6, 0.2, 0.1
3

π
α θ φ η τ= = ∈= = = =

Fig 6. Variation of p∆  with Q   for different values of θ  when 

n = 3, Da = 0.1, 0.1, 0.1, 0.6, 0.1, 0.1α φ η τ= ∈= = = =
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Fig 7.  Variation of p∆  with Q   for different values of n when   

Da= 0.2, 0.1, 0.1, / 3, 0.6, 0.1, 0.2α θ π φ η τ= ∈= = = = =
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